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“Equilibrium change in Earth’s global mean surface temperature, 
in response to a doubling of atmospheric CO2 relative to pre-
industrial conditions” (IPCC)

Equilibrium Climate Sensitivity (ECS)



ECS is a good predictor of future warming

Warming by end of century 
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Observational constraints are weak 
(as are model-constraints)

Sherwood, Webb et al 2020



Observational constraints are weak 
(as are model-constraints)

Sherwood, Webb et al 2020

Can we bring better observational constraints?



ECS: all about the λ

Energy Budget: ΔN = ΔF − λΔT
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ARMOUR ET AL.: SEA ICE REVERSIBILITY X - 5

Global radiative forcing (F ) changes approximately linearly with time over the CO2

rampings, by about 3.7 Wm�2
per 70 yr, which is the period of CO2 doubling or halving

[Myhre et al., 1998]. The o↵set in Figure 1 between warming (red) and cooling (blue)

trajectories implies a lagged response of hemispheric-mean annual-mean surface tempera-

ture anomalies (�TNH and �TSH), as expected from deep ocean heat storage [e.g., Held et

al., 2010]. In order to approximately account for this lag, we consider the evolution of ice

area as a function of hemispheric temperature rather than time. A justification for this

treatment is that annual-mean Arctic sea ice area has been found to decline linearly with

increasing global-mean temperature across a range of GCMs, emissions scenarios, and

climates [Gregory et al., 2002; Ridley et al., 2008; Winton, 2006, 2008, 2011]. Specifically,

we extend the arguments of Winton [2011], relating hemispheric ice cover to global forcing

through
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ECS: all about the λ

Energy Budget: ΔN = ΔF − λΔT

Equilibrium Climate Sensitivity 
  ΔQ = 0

ECS = ΔT2× =
ΔF2×

λ
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Changes since pre-industrial 
(  from ARGO)ΔN

Energy Budget: ΔN = ΔF − λΔT

λhist

ECS: all about the λ

Equilibrium Climate Sensitivity 
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ΔF2×
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Equilibrium Climate Sensitivity 

Energy Budget: ΔN = ΔF − λΔT

λhist ECSinf =
ΔF2×

λhist

ECS: all about the λ
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Equilibrium Climate Sensitivity 

ECSinf =
ΔF2×

λhist

ECS: all about the λ
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Observations

ECS (oC)



Equilibrium Climate Sensitivity 
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Equilibrium Climate Sensitivity 
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ARGO GCMs 
Δλ = 0.5 ± 0.5W/m2/K

Pattern effect correction



WCRP assessment - Sherwood, Webb et al 2020

Equilibrium Climate Sensitivity 

ECS =
ΔF2×

λhist − Δλ

ARGO GCMs 
Δλ = 0.5 ± 0.5W/m2/K

Pattern effect correction



WCRP assessment - Sherwood, Webb et al 2020

Equilibrium Climate Sensitivity 

ECS =
ΔF2×

λhist − Δλ

ARGO GCMs 
Δλ = 0.5 ± 0.5W/m2/K

Pattern effect correction

use CERES to constrain Δλ



Pattern effect: feedback depends on warming pattern

λeq
???= λhist

R = λT



Pattern effect: feedback depends on warming pattern

λeq
???= λhist

R = λT
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Pattern effect: feedback depends on warming pattern
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Cloud feedback decomposition
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Cloud Radiative kernels (radiation vs cloud fraction) 
Cloud amount change  (cloud frac vs cloud controlling factors) 
Atmospheric Circulation (atmospheric state vs surface temperature) 
Warming Pattern 
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Tropical Climate Dynamics

Arakawa 1975 
Stevens 2005
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ΔSST

Response to Warm Pool warming
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ΔSST

Response to Warm Pool warming
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How to constrain cloud feedbacks?
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Constraining net feedback
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Klein et al 2017
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Method 1: T + EIS
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Method 1: T + EIS

CESM2 Abrupt 4xCO2

ΔEIS
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Method 1: T + EIS

CRE 30S-30N

R = ≈
∂R
∂T

T +
∂R

∂EIS
ΔEIS

CESM2 Abrupt 4xCO2 CESM2 AMIP 
(band-pass filtered to ENSO)

Constrainable from  CERES
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Change in pattern looks like ENSO



Method 2: Emergent constraint

=CRE regressed onto nino3.4λc
ENSO

Uncertainty Quantification needed
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Constraining feedback change  
with respect to ENSO 
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Get from GCMs
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Summary

Equilibrium Climate Sensitivity 

ECS =
ΔF2×

λhist − Δλ

ARGO CERES 

Pattern effect can be constrained from CERES 
- Reduced dimension - CRE vs dominant CCF 
- Emergent Constraints on ENSO feedback 
- Detailed analysis of CRE response to ENSO + how does ENSO state changes?


